HART Configurator

Version 101-7

For HART Instruments

Instruction Manual

HART is a trademark of the HART Communication Foundation

Copyright © BMS Technology 2000
Index

1 Introduction
2 Preparation
3 Connect the Configurator
4 Calibrate
5 Range
6 Monitor
7 Test
8 Reset
9 Setup
10 Special Functions

www.bmstech.com/hart/

bmstech.com (Instruments Division) - part of the BMS Technology group
55 High Street Telephone: +44 (0)7 010 700 020
Tring HP23 5AG Fax: +44 (0)7 010 700 021
England Email: info@bmstech.com

You have the non-exclusive right to use the Software. You may not copy the Software or any part of the Software. You shall endeavour to prevent any unauthorised use of the Software. The Software means computer programs, instruction manuals and documentation. All Industrial Property Rights in the Software or any part thereof, including patents, trademarks, trade names, copyrights and designs in relation to the Software and applications for such rights shall at all times remain vested in BMS Technology. BMS Technology shall be under no liability in respect of or arising out of the Software.
1 **Introduction**

With the configurator you can set up, test and calibrate instruments which use the HART protocol, as well as monitor process variables.

The configurator uses a pocket computer which also offers built-in functions such as calculator, diary and notes, and may also be used to run other software.

Configurator software is supplied in a Datapak. Each type of Datapak may be used with any HART instrument and also supports specific functions for one or more instrument type.

2 **Preparation**

You need an MTL611B or Psion Organiser LZ64 pocket computer, a CNF61 interface, CAB18 cable and a Datapak. The MTL611B is intrinsically safe; it may be taken into hazardous areas and connected to intrinsically safe instrument circuits.

Make sure a battery is fitted to the computer. Attach the CNF61 to the top and slide the Datapak into one of the slots at the back of the computer. Plug in the CAB18 cable.

Before taking the configurator into a hazardous area:

- Check the battery is suitable for IS use
- Remove any non-IS accessories
- Inspect for damage
- Switch on the configurator and check it works correctly

Press the ON key to switch on the computer. The menu should include "Hart" - if not, press the ON key again.

Adjust the display using the contrast wheel.

To switch off, go back to the main menu and press the letter O key.
3 Connect the Configurator

Clip the configurator cable onto your instrument loop. Select Hart from the main menu. The options for connecting the configurator are:

3.1 Connect

This is the normal way of connecting when there is only one instrument on the loop.

Select Connect to communicate with the instrument at address 0. While the configurator gets information from the instrument its details are shown, starting with the instrument serial number, description and the date (year/month/day) its configuration was last changed.

3.2 Scan

The HART protocol allows up to 15 instruments on a multi-drop loop (addresses 1 to 15). A single instrument on a loop should use address 0. The configurator scans all addresses 0 to 15. You can change the address of a scanned instrument. For example, if a multi-drop loop responds with an instrument at address 0, you can change its address via Setup.

Select scan. The address being scanned is shown. As instruments are found a list builds up on screen. You can interrupt scanning at any time by pressing ON.

Select an instrument using the arrow keys and press EXE. While the configurator gets information from the instrument its details are shown, starting with the instrument serial number, description and the date (year/month/day) its configuration was last changed.

3.3 Address

Select Address and enter the required address (0 to 15). Press EXE. While the configurator gets information from the instrument its details are shown, starting with the instrument serial number, description and the date (year/month/day) its configuration was last changed.
NB If you have another HART controller on the loop ensure that burst mode is off before connecting the configurator.
4 Calibrate

Connect the configurator then select Calibrate from the menu.

4.1 Warning

Make sure the signal you are calibrating is not used for control: set the controller to manual then press EXE. When calibration is finished set the controller back to automatic.

4.2 Set Zero

Select Set Zero. Apply a process input to the instrument equivalent to the zero (or range low) point then press EXE. The instrument zero is set at this input.

4.3 Trim Zero & Span

When one instrument is in the loop it adjusts its output (the loop current) between 4mA and 20mA. In a multi-drop loop instruments do not adjust the loop current: the trim feature is not available.

Select Trim Zero. The output is set to 4mA. Measure the loop current with a test meter; enter the reading on the configurator and press EXE. Repeat until the meter reading is 4mA plus or minus the instrument tolerance. The current is trimmed to compensate for minor errors. Press ON: the instrument output again tracks the process variable.

Similarly, select Trim Span and adjust until the meter reads 20mA.

4.4 Calibrate Zero & Span (some instruments only)

Select Calibrate Zero. Apply a process input to the instrument equivalent to the zero (range low) point, enter the process value then press EXE. The instrument zero is set at this value.

Select Calibrate Span. Apply a process input equivalent to the span (range high) point, enter the process value then press EXE. The instrument span is set at this value.
4.1 Set zero

Sets transmitter output to 4mA

4.2 Trim zero

Adjust Var 1 to [range low] [units]
press ON to quit

4.3 Trim span

Sets transmitter output to 20mA

4.4 Calibrate zero

Calibrate zero .. [units]
press ON to quit

4.5 Calibrate span

Calibrate span .. [units]
press ON to quit

4.6 Sets transmitter span to value entered

3.5 Measured Current .. mA
press ON to quit

Sets transmitter zero to variable 1 reading

Sets transmitter zero to value entered

Turn OFF Controller

Turn ON Controller
5 **Range**

Instruments measure a process variable between two values. For instance, a temperature transmitter has a range of -20°C to +180°C. The instrument’s range may be set using the configurator.

Connect the configurator then select Range from the menu. The screen shows the range, the process variable and the same variable as a percent of the range, such as:

```
Var :       30.0°C  
Zero:        -20°C  
Span:        180°C  
Var = 25% of range
```

Set the Zero first, then select Span or "Var % of range" to set the span.

5.1 **Read Variable**

Select Var to reread the process variable.

5.2 **Zero**

Select Zero. The screen shows the process variable and the zero (range low) value. Select Var to reread the process variable. Select Limits to see the low and high limits and the minimum span. Select Zero to enter a new value, or select Set Zero = Var to set the displayed process variable as the new zero.

5.3 **Span**

Select Span. The screen shows the process variable and the span (range high) value. Select Var to reread the process variable. Select Limits to see the low and high limits and the minimum span. Select Span to enter a new value, or select Set Span = Var to set the displayed process variable as the new span.

5.4 **Span in Percent**

Select "Var % of range". The top line shows the process variable. The bottom line shows the same variable expressed as a percent of the range. Enter a new percentage value then press EXE.
The displayed process variable becomes the percentage of the new range. For example, zero is 0 bar and the process variable is 0.4 bar; enter 50%; the range becomes to 0 to 0.8 bar.
6 **Monitor**

Instrument variables may be monitored by the configurator.

Connect the configurator then select Monitor from the menu.

6.1 **Current**

Select Current. The loop current is displayed and reread periodically. This feature is available only for instruments at address 0 - in a multi-drop loop instruments do not adjust the loop current.

6.2 **Variable 1**

Select Var 1. The primary variable is displayed and reread periodically.

6.3 **Variable 2**

Select Var 2. Some instruments have a second variable: it is displayed and reread periodically.

6.4 **Variable 3**

Select Var 3. Some instruments have a third variable: it is displayed and reread periodically.

6.5 **Variable 4**

Select Var 4. Some instruments have a fourth variable: it is displayed and reread periodically.

Press ON to stop monitoring.

Section 10 gives details of any instrument-specific use of variables.
HART Configurator Instructions

Monitor

Addr:[a] Tag:[name]
Current Var 1
Var 2 Var 3
Var 4

6.1 Current
Addr:[a] Tag:[name]
Loop Current
....... mA
press ON to quit

6.2 Var 1
Addr:[a] Tag:[name]
Variable 1
....... [units]
press ON to quit

6.3 Var 2
Addr:[a] Tag:[name]
Variable 2
....... [units]
press ON to quit

6.4 Var 3
Addr:[a] Tag:[name]
Variable 3
....... [units]
press ON to quit

6.5 Var 4
Addr:[a] Tag:[name]
Variable 4
....... [units]
press ON to quit
7 Test

Connect the configurator then select Test from the menu.

7.1 Communications

Select Communications. Messages are repeatedly sent to the instrument. The number of messages and the number of errors is shown. Press ON to stop the test.

7.2 Instrument

Test commands are sent to the instrument and the response examined. Diagnostic messages depend on the type of instrument.

7.3 Loop Current

The loop current may be set using the configurator. This feature is available only for instruments at address 0 - in a multi-drop loop the loop current stays fixed.

Select Loop current. Make sure the signal you are testing is not used for control: set the controller to manual then press EXE.

Enter a test current then press EXE. The instrument sets the current to the value displayed. Press ON: you can enter other values.

Press ON. The instrument output again tracks the process variable. You may now set the controller back to automatic: press EXE.

8 Reset

The instrument may be reset from the configurator. Connect the configurator then select Reset from the menu. Confirm you wish to reset by selecting Yes.

While the instrument is resetting its output may change and it will not respond to commands. Reset actions depend on the type of instrument.
HART Configurator Instructions

7. Test
Addr:[a] Tag:[name]
Communications
Instrument
Loop current

7.1 Communications
Addr:[a] Tag:[name]
Messages: .. Errors : .. press ON to quit

7.2 Instrument
Addr:[a] Tag:[name]
Test Passed press ON to quit

7.3 Loop current
Addr:[a] Tag:[name]
WARNING: Turn OFF Controller

Test Current mA press ON to quit

Loop Current mA press ON to quit

On
Sets instrument output to normal

Addr:[a] Tag:[name]
WARNING: Turn ON Controller
9 Setup

Connect the configurator then select Setup from the menu. See section 10 for special setup functions.

9.1 Address

Select Address. Press ON to clear. Then press ON to leave the instrument address unchanged or enter a new value then press EXE.

9.2 Tag Name

Select Tag. Press ON to clear. Then press ON to leave the tag name unchanged or enter a new tag then press EXE.

9.3 Description

Select Description. Press ON to clear. Then press ON to leave the instrument description unchanged or enter new text and press EXE.

9.4 Message

Select Message. Use the four arrow keys to view a long message. Press ON to clear. Then press ON to leave the message unchanged or enter new text then press EXE.

9.5 Transfer Function

Select Function. Some instruments allow different transfer functions (see section 10). Use the arrow keys then press EXE to change the transfer function or press ON to leave it unchanged.

9.6 Units

Select Units. Press ON to leave the process units unchanged or use the arrow keys then press EXE to change.

9.7 Damping

Select Damping. Some instruments let you enter a new value: press
ON to clear then enter the new value and press EXE. Some instruments let you select a new value from a table: use the arrow keys then press EXE.

9.8 Assembly
Select Assembly. Press ON to clear. Then press ON to leave the assembly number unchanged or enter a new number then press EXE.

9.9 Preambles
Select Preambles. If the instrument allows preambles to be changed, press ON to clear then enter a new number and press EXE.

9.9.1 Protect
Select Protect. The write protect status is shown. It cannot be changed. Press ON to return to the setup menu.

10 Special Functions
When you are connected to an instrument with special functions, additional selections appear on the setup menu.

This Datapak supports special functions for:

- Bailey F&P PTH pressure transmitters
- Druck STX2000 pressure transmitters
- Druck STX2100 pressure transmitters
- Fuji FCX-A/C series pressure transmitters
- Hartmann & Braun AS800 pressure transmitters
- Hartmann & Braun TEU211 temperature transmitters
- Hartmann & Braun TS11 temperature transmitters
- Magnetrol Smart-EZ Modulevel transmitters
- Rochester Instrument Systems SC6400 temperature transmitters
- Rosemount 1151 series pressure transmitters
- Rosemount 3051 series pressure transmitters
10.1 Bailey F & P PTH Pressure Transmitters

10.1.1 Variables

Var 3 is the transmitter’s internal cell temperature.

Var 2 may be configured: select Var 2 from the Setup menu:

10.1.1.1 Var 2 Range Low

The existing zero (range low) for the second variable is shown. Press ON to clear the existing value. Then press ON to leave the value unchanged, or enter a new value and press EXE.

10.1.1.2 Var 2 Range High

The existing span (range high) for the second variable is shown. Press ON to clear the existing value. Then press ON to leave the value unchanged, or enter a new value and press EXE.

10.1.1.3 Var 2 Units

The existing units for the second variable are shown. Press ON to clear the existing entry. Then press ON to leave the units unchanged, or enter new units and press EXE.

10.1.2 Transfer Function

The following transfer functions are available:

- Linear Linear (the default function);
- Sqr Root Square root;
- 3/2 Root 3/2 power flow mode;
- 5/2 Root 5/2 power flow mode;
- Curve Function generator mode;
- Sphere Volumetric (spherical tank);
- Cylinder Volumetric (flat end cylindrical tank).

If you select Curve the curve points are shown: X1 to X5, Y1 to Y5. Refer to the "Function Generator" section of the instrument instruction manual for an explanation of these points.

To change a point highlight it using the arrow keys and press EXE.
Press ON to clear. Then press ON to leave the point unchanged or enter the new number then press EXE. When all changes are made press ON. Confirm that you want to send the new values to the instrument by selecting Yes.

Each point is a number between 0 and 1. Points X0 and Y0 are permanently set in the instrument to 0; X6 and Y6 are both 1.

10.1.3 **Action**

Select Action. Select Normal or Reverse to set the action or press ON to leave it unchanged. The default is Normal: output increases as the process variable rises.

10.1.4 **Fail**

Select Fail. Select Low, High or Fixed to set the fail mode or press ON to leave it unchanged. The default is Low: if the instrument detects a critical internal failure the output goes low.

10.1.5 **Initialize**

Select Initialize. Select Low or High or press ON to leave it as shown. The default is Low: for a few seconds after power is applied (and when you send a reset command) the instrument output goes low.

10.1.6 **Offset**

This is normally used to set up tank volume calculations. Refer to the sections in the instrument manual on "Spherical Tank Volume Calculation" and "Flat End (Cylindrical) Tank Volume Calculation": set the appropriate transfer function first.

Select Offset, then set the lower value followed by the upper value.

The lower value is the offset used in the tank volume calculation, and depends on the specific gravity (SG) of the process fluid and the distance (D) from the transmitter cell to the bottom of the tank:

\[
\text{Offset} = \text{SG} \times \text{D}
\]

The upper value depends on the lower value and the height (H) of the tank:
Upper Value = Offset + (SG multiplied by H)

10.1.7 Display

Select Display. The optional liquid crystal display on the instrument can show one of four readings. NB: the analog meter cannot be changed - it always shows the primary variable (Var 1) in percent.

To change the display select one of:
- Var 1: Primary variable in engineering units;
- Var 2: Second variable in engineering units;
- Var 1 %: Primary variable in percent;
- Cell temp: Cell temperature.

10.1.8 Cell Data

Select Cell. The date of manufacture, location of manufacture, and serial number of the instrument cell are shown.

10.1.9 Transmitter Type

Select Type. The type of the transmitter is shown: this is the product nomenclature as described in the instrument’s instruction manual.

10.1.10 Low Temperature Alarm

Select Lo alarm. The low temperature alarm limit for the instrument cell is shown. Press ON to clear the existing entry. Then press ON to leave the value unchanged or enter a new value and press EXE. The value must be between -40°C and 85°C; the default value is -40°C.

10.1.11 High Temperature Alarm

Select Hi alarm. The high temperature alarm limit for the instrument cell is shown. Press ON to clear the existing entry. Then press ON to leave the value unchanged, or enter the new value and press EXE. The value must be between -40°C and 85°C; the default value is 85°C.

10.1.12 Maximum Temperatures

Select Max temps. The maximum temperatures to which the cell and
electronics assemblies have been exposed are shown.

10.1.13 **Set Default Configuration**

Select Default. Confirm you wish to set the default configuration by selecting Yes, or select No to leave the configuration as it is.

The default configuration changes the instrument back to the standard factory settings, except for the date - refer to the instrument manual for full details. While the instrument is resetting its output goes to initialize mode (high or low) value.
10.2 Druck STX2000 Pressure Transmitters

10.2.1 Variables
Var 2 is the sensor temperature.
Var 3 is the electronics cavity temperature.

10.2.2 Transfer Function
The output may be set to linear or square root.

10.2.3 Display
Select Display to see if a display is installed. Press ON to return to the setup menu or if the setting is incorrect change it using the arrow keys then press EXE.

10.2.4 Burnout
Select Burnout. The burnout (or alarm) mode is shown: Fail Low, Fail High or Fail Fixed. Press ON to return to the setup menu. The mode cannot be changed here - see the instrument manual.

10.2.5 Module
Select Module. The type of module is shown, such as Differential (DP). Press ON to return to the setup menu.

10.2.6 Materials
Select Materials. Press the arrow keys to move around the list of components, then press EXE to see the component detail.

- Connector type;
- Connector material;
- Module fill fluid;
- Module isolator material.

Select one of the above. Press ON to leave the material as shown. To change the material use the arrow keys then press EXE.
10.3 Druck STX2100 Pressure Transmitters

10.3.1 Variables
Var 2 is the transmitter's internal temperature.

10.3.2 Transfer Function
The output (variable 1) and the display may each be set to linear or square root.

10.3.3 Display
Select Display. The type of display should match the display installed:

- Digital Display EU Digital display in engineering units
- Digital Display % Digital display in percent
- Analog Meter EU Analog display in engineering units
- Analog Meter % Analog display in percent

Press ON to return to the setup menu, or if the type of display is incorrect select a type by pressing the arrow keys then press EXE.

10.3.4 Local Key
Select Local key. When the local key is enabled you can alter the zero using the adjusting screw on the instrument. When the local key is disabled the adjusting screw has no effect. Press ON to leave the local key as it is or EXE to change.

10.3.5 Burnout
Select Burnout. The burnout (or alarm) mode is shown: Fail Low, Fail High or Fail Fixed. Press ON to return to the setup menu. The mode cannot be changed here - see the instrument manual.

10.3.6 Module
Select Module. The type of construction of the module is shown, such as Differential (DP). This is set in the factory and cannot be changed. Press ON to return to the setup menu.
10.3.7 Maximum Range

Select Max range. The maximum usable pressure range is shown. It cannot be changed from here. Press ON to return to the setup menu.

10.3.8 Materials

Select Materials. Press the arrow keys to select one of the following components, then press EXE:

- Flange type;
- Flange material;
- O ring/gasket material;
- Drain vent material;
- Remote seal type;
- Remote seal fluid;
- Remote seal isolator material;
- # of remote seals;
- Module fill fluid
- Module isolator material.

Press ON to leave the component as shown. To change a material use the arrow keys then press EXE. The module fill fluid and module isolator material cannot be changed.
10.4 **Fuji FCX-A/C Series Pressure Transmitters**

10.4.1 **Variables**

Var 2 is the transmitter's internal temperature.

10.4.2 **Transfer Function**

The output (variable 1) and the display may each be set to linear or square root.

10.4.3 **Display**

Select Display. The type of display should match the display installed:

- Digital Display EU Digital display in engineering units
- Digital Display % Digital display in percent
- Analog Meter EU Analog display in engineering units
- Analog Meter % Analog display in percent

Press ON to return to the setup menu, or if the type of display is incorrect select a type by pressing the arrow keys then press EXE.

10.4.4 **Local Key**

Select Local key. When the local key is enabled you can alter the zero using the adjusting screw on the instrument. When the local key is disabled, the adjusting screw has no effect. Press ON to leave the local key as it is, or EXE to change.

10.4.5 **Burnout**

Select Burnout. The burnout (or alarm) mode is shown: Fail Low, Fail High or Fail Fixed. Press ON to return to the setup menu. The mode cannot be changed here - see the instrument manual.

10.4.6 **Module**

Select Module. The type of construction of the module is shown, such as Differential (DP). This is set in the factory and cannot be changed. Press ON to return to the setup menu.
10.4.7 Maximum Range

Select Max range. The maximum usable pressure range is shown. It cannot be changed from here. Press ON to return to the setup menu.

10.4.8 Materials

Select Materials then select a part. The material for that part is shown and may be changed for some parts. Press ON to leave the component as shown or use the arrow keys then press EXE to change.
10.5 Hartmann & Braun AS800 Pressure Transmitters

The write protect (WP) key must be in the correct position on the instrument or a message will appear when you try to make changes.

Transfer data to EEPROM after making changes so the instrument continues to use your settings following a power failure.

10.5.1 Variables

Var 2 is the transmitter internal temperature.

Var 3 is the primary variable in percent.

10.5.2 Transfer Function

The following transfer functions are supported:

- Linear
- Square Root
- 3/2 Root (flow)
- Curve

10.5.3 Display

Select Display. You may choose one of several types of display depending on what is fitted to the instrument.

10.5.4 Local key

Select Local key. Press ON to leave it as it is or EXE to change.

10.5.5 Burnout

Select Burnout. The fail mode is shown. Select Low or High to set the mode or press ON to leave unchanged.

10.5.6 Module

Select Module. The module type is shown.
10.5.7 **Maximum Range**
Select Max range. The maximum range is shown.

10.5.8 **Maximum Pressure**
Select Max press. The maximum pressure is shown.

10.5.9 **Materials**
Select Materials then select a part. The material for that part is shown and may be changed for some parts. Press ON to leave the component as shown or use the arrow keys then press EXE to change.

10.5.10 **EEPROM**
Select Eeprom. To transfer your configuration data to non-volatile memory (EEPROM) select Burn. To read the contents of the EEPROM into working memory select Read.
10.6 Hartmann & Braun Temperature Transmitters

Transfer data to EEPROM after making changes so the instrument continues to use your settings following a power failure.

10.6.1 Variables

Var 2 is the reference junction temperature.

Var 3 is the input value at channel 1 if the instrument is configured for this type of measurement.

Var 4 is the input value at channel 2 if the instrument is configured for this type of measurement.

10.6.2 Sensor Type

Select Sensor. The type of sensor is shown. Press ON to leave it unchanged or press EXE to change the sensor type. Go through the configuration procedure step by step. The settings must match the way you have wired up the sensor(s): see the instrument manual for wiring diagrams. The following sensor configurations are available:

10.6.2.1 2-wire Resistance Thermometer

Select Pt100 or Ni100 2-wire. Choose the number of sensors in the circuit (usually one resistance thermometer but several may be used to produce an averaged reading) then select the appropriate measurement type (either 0 to 391 ohms or 0 to 3250 ohms).

Select the required fault detection and press EXE. Set the required units and ensure the range is suitable.

10.6.2.2 Dual 2-wire Resistance Thermometer (TEU211 only)

Select Dual Pt100 or Ni100 2-wire. Choose the measurement type:

- 0 to 391 ohms difference
- 0 to 391 ohms mean

Select the required fault detection and press EXE. Set the required units and ensure the range is suitable.
10.6.2.3 3-wire or 4-wire Resistance Thermometer

Select Pt100 or Ni100 3-wire or 4-wire.

Select the required fault detection and press EXE. Set the required units and ensure the range is suitable.

10.6.2.4 Thermocouple

Select Thermocouple then choose the type (e.g. press J for a type J thermocouple).

Choose an external reference or the instrument’s internal reference in which case you may adjust the reference temperature.

Select the required fault detection and press EXE. Set the required units and ensure the range is suitable.

10.6.2.5 Dual Thermocouple (TEU211 only)

Select Dual thermocouple then choose the type (e.g. press J for a type J thermocouple). Choose the measurement type:

- Difference
- Difference/external
- Mean
- Mean/external
- Mean/redundant
- Mean/redundant/external

Select the required fault detection and press EXE. Set the required temperature units and ensure the range is suitable.

10.6.2.6 Linear Voltage

Select Millivolt.

Select the required fault detection and press EXE. Set units to mV and ensure the range is suitable.

10.6.2.7 Dual Linear Voltage (TEU211 only)

Select Dual millivolt then choose the type:
Difference
Mean

Select the required fault detection and press EXE. Set units to mV and ensure the range is suitable.

10.6.2.8 Linear Resistance

Select Linear resistance.

Select the required fault detection and press EXE. Set units to ohms and ensure the range is suitable.

10.6.3 Fault Detection

Fault detection may be set via the Setup menu; it is also set when sensors are configured.

Select Fault. The type of fault detection is shown. Press ON to leave it as it is or press EXE to change. Choose one of the following, ensuring that it is suitable for your sensor configuration:

- No detection
- Open circuit
- All open circuits
- Short circuit
- Open/short circuit
- All short circuits
- All open/short circuits

10.6.4 EEPROM

Select Eeprom. To transfer your configuration data to non-volatile memory (EEPROM) select Burn. To read the contents of the EEPROM into working memory select Read.
10.7 Magnetrol Smart-EZ Modulelevel Transmitters

10.7.1 Specific Gravity

Select S.g. The specific gravity of the process material is shown. Press ON to clear the existing entry. Then press ON to leave it unchanged or enter a new value then press EXE.

10.7.2 Dry Point

The dry point should be set before setting the instrument range. It is needed for the specific gravity functions.

Select Dry point. Make sure the instrument is not used for control: set the controller to manual, then press EXE.

The screen shows "Set Dry Hanging Displacer Point". When the instrument has its displacer hanging free without any residue, press EXE. The displacer point to be used is shown: select Yes to accept it or No to try again.

The output again tracks the process variable. You may now set the controller back to automatic: press EXE.
10.8 Rochester SC6400 Temperature Transmitters

10.8.1 Variables

Var 2 is the cold junction compensation temperature.

10.8.2 Sensor Type

Select Sensor. The type of sensor is shown. Press ON to leave it unchanged, or press EXE to change the sensor type. Select the new type using the arrow keys then press EXE. The setting must match the way you have wired up the sensor: see the instrument manual for wiring diagrams. The following sensor configurations are available:

- Pt100 Platinum resistance thermometer
- Thermocouple
- Millivolt Linear voltage
- Ohms Linear resistance

The SC6400 stores 3-wire or 4-wire configurations for resistance thermometers or resistance readings; if you use a 2-wire configuration select either 3- or 4-wire.

If you choose Pt100 select the type using the arrow keys then press EXE. If you choose Thermocouple select the type (e.g. press J for a type J thermocouple).

The new sensor configuration is sent to the instrument. The range and process units may have changed: the new Zero and Span values are shown. Make any changes to the range then press ON to return to the setup menu.

10.8.3 Fail Mode

Select Fail. The sensor fail mode is shown. Select Low, High or Off to set the mode, or press ON to leave the mode unchanged.

If you select High, the process variable will move upscale if the sensor goes open circuit. If you select Low, the process variable will move downscale if the sensor goes open circuit. If you select Off, there is no sensor fail action.
10.9 Rosemount 1151 Series Pressure Transmitters

10.9.1 Transfer Function
The output (variable 1) may be set to linear or square root.

10.9.2 Module
Select Module. The type of construction of the module is shown, such as Differential. This is set in the factory and cannot be changed. Press ON to return to the setup menu.

10.9.3 Materials
Select Materials. Press the arrow keys to select a component then press EXE. Press ON to leave the component as shown. To change a material use the arrow keys then press EXE. The module fill fluid and module isolator material cannot be changed.
10.10 Rosemount 3051 Series Pressure Transmitters

10.10.1 Transfer Function

The output (variable 1) may be set to linear or square root.

10.10.2 Display

Select Display. You may choose what to display (depending on what is fitted to the instrument). Press ON to return to the setup menu, or EXE to change.

10.10.3 Local Key

Select Local key. When the local key is enabled you can alter the span and zero using the adjusting screws on the instrument. When the local key is disabled they have no effect. Press ON to leave the local key as it is, or EXE to change.

10.10.4 Module

Select Module. The type of construction of the module is shown, such as Differential. This is set in the factory and cannot be changed. Press ON to return to the setup menu.

10.10.5 Maximum Range

Select Max range. The maximum usable pressure range is shown. It cannot be changed from here. Press ON to return to the setup menu.

10.10.6 Materials

Select Materials. Press the arrow keys to select a component then press EXE. Press ON to leave the component as shown. To change a material use the arrow keys then press EXE. The module fill fluid and module isolator material cannot be changed.